Характеристики авиалайнеров прямо влияют на качество услуг авиакомпаний и комфорт пассажиров. Высокая скорость самолета гарантирует быстрое перемещение с одного континента на другой, благодаря чему авиаперелеты высоко ценятся бизнесменами и путешественниками. Широкий диапазон скоростей позволяет обеспечивать большие объемы перевозок и более точно придерживаться расписания.
Но на заре гражданской авиации самолеты были тихоходными. Скорость самолета 200 км/ч вызывала неподдельный интерес у обывателей. Сегодня «железные птицы» летают в несколько раз быстрее, а отдельные даже превосходят скорость звука!
Скорость современных самолетов
Возможности пассажирских авиалайнеров растут вместе с развитием технологий мирового самолетостроения. Меняются стандарты перевозок, и сегодня уже не скорость, а безопасность и комфорт выходят на первый план.
Запредельные скорости военной авиации способны поразить воображение, но технологии, их обеспечивающие, слишком дороги. Аппарат, способный летать быстрее звука, стоит в несколько раз дороже обычного. Поэтому выбирается баланс между стоимостью и скоростными характеристиками.
Сегодня стандартной считается скорость пассажирского самолета в пределах 600-900 км/ч. Речь идет о крейсерской скорости, на которой обеспечивается режим максимальной дальности полета. Набрав заданные высоту и скорость полета, экипаж снижает режим работы силовых установок до 0,7 от номинальной мощности (допустимой для длительного использования). Это позволяет экономить ресурс двигателей и топливо.
Например, экипажи Boeing 777 на эшелоне выдерживают скорости до 900 км/ч, хотя ограничение установлено производителем на отметке 965 км/ч. Турбовинтовые самолеты обычно летают на скоростях 500-600 км/ч.
Сверхзвуковые самолеты
В 60-х годах прошлого века прогресс привел к появлению сверхзвуковых авиалайнеров (Ту-144 и «Конкорд») с совершенно другими двигателями, усиленными фюзеляжами и крыльями.
Максимальная скорость самолета в такой конфигурации доходила до 2500 км/ч, а крейсерская — до 2300 км/ч. Конструкторам пришлось имплементировать дополнительные системы жизнеобеспечения, поскольку такие лайнеры летали на больших высотах. По сути, это были демонстраторы технологий. Они не были экономичными, достаточно комфортными, простыми в производстве и эксплуатации, поэтому уже не используются.
Да и нужна ли такая высокая средняя скорость самолета без привычного комфорта? Возможно. Но чрезмерный риск, ни пассажирам, ни перевозчикам точно не нужен.
Авиаконструкторы пытаются представить нечто подобное, но пока им не удается соблюсти все требования современных стандартов, и в первую очередь, безопасности.
Факторы, влияющие на скорость самолета
Летно-технические возможности лайнера определяет диапазон допустимых скоростей и высот полета. Минимально-допустимая скорость самолета ограничивается скоростью сваливания, ниже которой подъемной силы будет недостаточно, чтобы удержать лайнере в воздухе. Максимальная скорость зависит от тяги (мощности), которую способны создать двигатели, и прочности конструктивных узлов.
Параметры определяются значениями воздушной скорости, т.е. скорости движения относительно воздуха. Температура и плотность воздуха сильно зависят от высоты полета. Чем более атмосфера холодна и разряжена, тем выше воздушная скорость. На большей высоте меньше сопротивление воздуха, и самолет движется быстрее.
С другой стороны, это область сильных струйных течений. Ветер может создавать попутную тягу либо дополнительное лобовое сопротивление. Таким образом, скорость и направление ветра непосредственно влияют на то, с какой скоростью летит самолет относительно земли. В авиации она называется путевой скоростью, и используется для расчета времени прибытия.
На больших высотах ветер в Северном полушарии преобладает ветер с направлением с запада на восток, поэтому перелеты, например, из Москвы в Токио занимают меньше времени, чем обратно. И тут уже неважно, с какой скоростью летит самолет. Многое зависит от условий полета, поэтому даже один и тот же самолет на одном маршруте показывает разное время.
Скорость самолета при взлете
Чтобы оторваться от земли, лайнер разбегается до скорости подъема носового колеса. Значение определяется инструкцией по летной эксплуатации в зависимости от массы самолета и целого ряда других аспектов.
Пилот берет штурвал на себя, когда скорость самолета при взлете уже способна обеспечить достаточную подъемную силу, и по достижении скорости отрыва самолет плавно уходит в небо.
Подъемная сила создается за счет разницы давлений на верхней и нижней поверхностях крыла. Дело в том, что крыло имеет выпуклый профиль в верхней части и прямой — в нижней. Во время движения самолета поток воздуха над крылом сужается, и давление в нем падает. Чем больше скорость, тем больше подъемная сила.
На кривизну профиля крыла влияет положение механизации. Чем больше углы отклонения закрылков и предкрылков, тем меньший разбег потребен для отрыва. Кроме того, на какой именно скорости взлетает самолет, влияют следующие факторы:
- Превышение (высота аэродрома над поверхностью моря), состояние, длина, уклон ВПП;
- Влажность, температура, давление воздуха;
- Скорость и направление ветра.
При этом, даже для одного и того же самолета она может меняться в довольно широких пределах. В среднем, для современных лайнеров это 200-290 км/ч. Цифры даны исключительно для общего представления о том, с какими скоростями на земле приходится сталкиваться пилотам.
По большому счету, скорость взлета самолета определяется в ходе проектирования и последующих летных испытаний. Составляются специальные графики, по которым пилоты определяют требуемые значения для конкретных условий. Либо используются бортовые вычислительные комплексы, в которые вводятся текущие значения параметров, указанных выше, и даже пилот узнает точное значение лишь перед взлетом.
Как правило, более крупные лайнеры взлетают на больших скоростях. Увеличенные масса и сечение фюзеляжа требуют большей скорости для преодоления силы притяжения земли и лобового сопротивления воздуха.